【Azure 架构师学习笔记】- Azure Databricks (12) -- Medallion Architecture简介

news/2025/2/27 2:44:21

本文属于【Azure 架构师学习笔记】系列。
本文属于【Azure Databricks】系列。
接上文 【Azure 架构师学习笔记】- Azure Databricks (11) – UC搭建

前言

使用ADB 或者数据湖,基本上绕不开一个架构“Medallion”, 它使得数据管理更为简单有效。ADB 通过把数据分为“金”,“银”,“铜” 三层来实现Medallion架构。同时搭配UC,使得medallion更加健壮,安全和合规。

除了Medallion, 还有一些概念如data warehouse, data lake, 和data lakehouse。

  • Data lake: 是一个中央存储库,以原始格式存储任意规模的结构化和非结构化数据。与传统存储相比,这样可以减少很多前期转换开销。其核心优势之一就是灵活性,另外还有对大量大数据处理工具的支持。
  • Data lakehouse:跟data lake的名字非常相似,在data lake中的数据,在展现给最终用户前,通常都需要进行处理。 但是data lake的目标是存储,而非处理。data warehouse可以提供处理,但需要预先范式化、模式化再存储,同时存储的量一般有限。基于这两种不足,最好的办法就是优势整合,保留data lake的强大存储功能和data warehouse的数据处理功能,从而出现了data lakehouse。
  • ETL/ELT:两者区别在于先转换然后存储(TL)还是先存储再转换(LT)。ETL 往往需要先转换成预定格式再存储,随着数据集成过程的量和速度要求,在大数据领域ETL非常容易出现性能瓶颈,且费用昂贵。而ELT如果搭配lakehouse,则可以很好地平衡性能与开销。

问题

上面提到了lakehouse和ELT 的好处,但是这更多集中于收集和存储,那么如何管理和组织数据呢?

传统的数据仓库环境,数据通过下图的流程完整数据准备。
在这里插入图片描述
在datalake中,数据以原始格式存储,但是实际上你需要对数据进行使用,而不是简单存储。这种几乎随意式的直接存储很难马上用于数据使用(主要是分析),因此还是需要进行清晰(clean),转换(transform)。

由于量大,分析复杂,传统的数据仓库处理方式如果直接应用在data lake上,会导致如时间久,资源消耗大,数据组织困难导致结果不准确等情况。这时候Medallion 架构就应运而生。

它为湖仓一体化而定制。主要目标是在从源到最终使用的过程中逐步增加结构和数据质量。

ADB Medallion

下图是来自于Databricks官网的架构图,Medallion的核心在于3个层(layer):Bronze,Silver, Gold, 也就是铜、银、金。 Medallion就是奖牌的意思。
在这里插入图片描述

Bronze (铜)

Bronze 层充当外部源系统的数据的初始登陆点。这层的数据反映了原始状态的源系统结构,并带有元数据信息,如加载日期/时间和进程 ID。这层的管理重点是变更数据捕获,支持源数据的历史存档,维护数据血缘,还有审计跟踪,并允许在必要时进行重新处理,而无需从源系统重新读取。

Silver (银)

下一层是 Silver 层。在这层中,来自 Bronze 层的数据经过一系列作,达到 一种叫做“Just-enough” 状态。提供包含基本业务实体、概念和事务的 “企业视图”。

Gold (金)

最后一层是 Gold 层。Gold 层中的数据通常被结构化到特定于主题领域的数据库中,以供使用。此层专用于报告,并采用非规范化、读取优化的数据模型,具有最少的联接。它是应用数据转换和质量规则的最终阶段。

在这三层里面, 铜是原始存储外加元数据信息,金是最终用于展示的数据集,跟传统的数据仓库类似。重点在于银这一层。

这一层是转换后的数据, 它存储了不同源系统数据转换成统一视图后的结果。但是之所以叫做“Just-enough”,是因为它又并不完全转换,而是最小转换,包含:

  1. 数据清洗,是识别和纠正数据集中的错误、不一致和不准确之处以提高其分析和可靠性的过程。这是数据准备过程中的关键步骤,通常在数据分析或集成之前执行。涉及的一些常见任务包括:删除重复项、更正拼写错误、标准化数据格式(尤其是日期和地址)、处理缺失值等。
  2. 数据验证:数据验证是通过各种验证技术确保数据准确、一致和可靠的过程。它通常包括根据已知的质量控制措施验证数据、确认数据符合公司数据治理策略、通过交叉引用不同的数据源或应用业务规则和逻辑来解决不一致问题、标准化和规范化数据以及处理异常值。
  3. 数据合规:数据合规是指确保数据符合特定标准、格式或要求的过程。它涉及转换和标准化数据,以使其与特定数据模型、架构或系统保持一致和兼容。
  4. 有目的地进行数据匹配:为了提供统一的企业视图,来自不同来源的数据最终必须进行整合和集成。为了使数据可整合,您必须将来自不同来源的数据汇集在一起,识别和确定不同数据集或来源的记录之间的关系,并将它们转换为一致且连贯的格式。

通过这些处理之后, silver中的数据已经变得有意义且可用于后续整合。但是一般来说,数据后进一步处理就不需要在这一层进行了,否则会出现过度预处理,最终使其成为了gold层。

Medallion 是一个设计模式,而不是数据模型,也就是说它更多是一个指引,然后在特定环境中(这主要指云环境)按需实现。比如用ADB+ADLS 来实现。

小结

介绍了什么是Medallion之后,接下来将使用ADB 来实现它。


http://www.niftyadmin.cn/n/5869401.html

相关文章

Day28 第八章 贪心算法 part01

一. 学习文章及资料 理论基础 455.分发饼干 376.摆动序列 53.最大子序和 二. 学习内容 1. 理论基础 贪心算法无规律! 一般如想到局部最优,好像能推出全局最优,并且无明显反例,那就试一试! 2. 分发饼干 (1) 解题思…

Ubuntu部署ktransformers

准备工作 一台服务器 CPU:500G GPU:48G(NVIDIA4090) 系统:Ubuntu20.04(github的文档好像用的是22.04) 第一步:下载权重文件 1.下载hfd wget https://hf-mirror.com/hfd/hfd.s…

FFmpeg.NET:.NET 平台上的音视频处理利器

FFmpeg.NET 是一个封装了 FFmpeg 功能的 .NET 库,能够方便地在 C# 项目中处理音视频文件。它支持多种操作,包括转码、剪辑、合并、分离音频等。 功能 解析元数据从视频生成缩略图使用以下参数将音频和视频转码为其他格式: 码率(…

微信小程序网络请求与API调用:实现数据交互

在前几篇文章中,我们学习了微信小程序的基础知识、数据绑定、事件处理以及页面导航与路由。这些知识帮助我们构建了具备基本交互功能的小程序。然而,一个完整的应用通常需要与服务器进行数据交互,例如获取用户信息、提交表单数据等。本文将深入探讨微信小程序的网络请求与AP…

计算机网络之路由协议(OSPF路由协议)

一、定义与分类 OSPF是一种内部网关协议(IGP),也属于链路状态路由协议。它使用链路状态路由算法,在单一自治系统(AS)内部工作。适用于IPv4的OSPFv2协议定义于RFC2328,而RFC5340则定义了适用于I…

基于Qlearning强化学习的2DoF机械臂运动控制系统matlab仿真

目录 1.算法仿真效果 2.算法涉及理论知识概要 2.1 2DoF机械臂运动学模型 2.2 Q-learning强化学习算法原理 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参…

深入解析 Linux /etc/skel 目录的作用与使用方法

在 Linux 系统中,用户的主目录通常存放着一系列个人配置文件,如 .bashrc、.profile 等,这些文件影响着用户的 Shell 环境、别名、环境变量等。而当我们创建新用户时,这些默认的配置从何而来?这正是 /etc/skel 目录发挥…

国内访问Github的四种方法(2025版)

声明:以下内容,仅供学习使用,不得他用。如有他用,与本文作者无关。 国内访问GitHub及下载文件的解决方案整理如下,结合最新技术方案和实测有效方法: 一、网络层解决方案 Hosts文件修改法 通过DNS查询工具…